пример Лосева
Dec. 18th, 2008 12:08 pm"...К несчастью, пошлые предрассудки обыденного мышления заставляют пугаться таких терминов, как «иррациональное число». Тут уж часто оказывается бессильной даже точнейшая математика. Однако сейчас мы покажем, что иррациональность не только есть нечто закономерно мыслимое и системное наряду с рациональными величинами, но что она есть также и нечто вполне видимое, физически видимое, физически осязаемое, хотя, правда, математики об этом не очень любят говорить.
Возьмите геометрическую фигуру — квадрат — и представьте себе, что каждая сторона этого квадрата равняется единице. Тогда опять-таки уже школьник бойко вычислит вам диагональ этого квадрата. Согласно известной теореме, диагональ квадрата со сторонами, равными единице, есть не что иное, как квадратный корень из 2. После этого я вас спрошу: видите ли вы своими глазами эту диагональ или не видите? Если у вас нормальные глаза, то, конечно, вы видите эту диагональ. А ведь она есть нечто иррациональное. Точно так же если вы имеете круг с определенным радиусом, то уже школьный учебник трактует о том, что такое окружность круга и что такое площадь круга. Окружность круга есть 2πR, где R есть величина радиуса, а π есть особого рода число, тоже не выразимое в конечных арифметических знаках, но по своей структуре гораздо более сложное, чем даже иррациональная величина. Также при помощи конечно измеряемого радиуса можно получить и площадь круга: πR2. И я опять спрошу: видите ли вы своими физическими глазами эту окружность круга и эту площадь круга, образованную при помощи конечного радиуса? Конечно, видите. Но в таком случае вы мне не говорите, что иррациональные или трансцендентные величины невидимы. Они великолепно видимы, как бы тут ни возмущался обывательский рассудок..."
http://losevaf.narod.ru/losev-problemasimvola.htmЗдесь бесконечность приближения понятия (тождественности) к отображаемой вещи.